A Convex Complementarity Approach for Simulating Large Granular Flows
نویسندگان
چکیده
Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted.
منابع مشابه
Large-Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit
In the context of simulating the frictional contact dynamics of large systems of rigid bodies, this paper reviews a novel method for solving large cone complementarity problems by means of a fixed-point iteration algorithm. The method is an extension of the Gauss-Seidel and Gauss-Jacobi methods with overrelaxation for symmetric convex linear complementarity problems. Convergent under fairly sta...
متن کاملOptimal energy management of the photovoltaic based distribution networks considering price responsive loads, energy storage systems and convex power flows.
Nowadays, presence of photovoltaic systems in distribution network is not without challenge and it may not have economic productivity for the system under the lack of optimal management. Energy storage systems are able to cope with this problem. Therefore, in this paper, a new method is proposed for energy management of the distribution networks in order to show that how presence of the energy ...
متن کاملUsing the Complementarity and Penalty Methods for Solving Frictional Contact Problems in Chrono: Validation for the Standard Triaxial Test
The numerical results of standard triaxial test were presented and validated against experimental ones. Two different approaches for modeling the dynamics of granular matter were used. The first one, discrete element method with penalty contact modeling (DEM-P) [1], is approach used in e. g. granular flows or powder mechanics simulations. The second method, called DEM-C (from “complementarity”)...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملA complementarity-based rolling friction model for rigid contacts
In this work1 we introduce a complementaritybased rolling friction model to characterize dissipative phenomena at the interface between moving parts. Since the formulation is based on differential inclusions, the model fits well in the context of nonsmooth dynamics, and it does not require short integration timesteps. The method encompasses a rolling resistance limit for static cases, similar t...
متن کامل